Tasks

Tasks
Administer a Cluster
Access Clusters Using the Kubernetes API
Access Services Running on Clusters
Advertise Extended Resources for a Node
Autoscale the DNS Service in a Cluster
Change the Reclaim Policy of a PersistentVolume
Change the default StorageClass
Cluster Management
Configure Multiple Schedulers
Configure Out Of Resource Handling
Configure Quotas for API Objects
Control CPU Management Policies on the Node
Customizing DNS Service
Debugging DNS Resolution
Declare Network Policy
Developing Cloud Controller Manager
Encrypting Secret Data at Rest
Guaranteed Scheduling For Critical Add-On Pods
IP Masquerade Agent User Guide
Kubernetes Cloud Controller Manager
Limit Storage Consumption
Namespaces Walkthrough
Operating etcd clusters for Kubernetes
Reconfigure a Node's Kubelet in a Live Cluster
Reserve Compute Resources for System Daemons
Safely Drain a Node while Respecting Application SLOs
Securing a Cluster
Set Kubelet parameters via a config file
Set up High-Availability Kubernetes Masters
Share a Cluster with Namespaces
Static Pods
Storage Object in Use Protection
Using CoreDNS for Service Discovery
Using a KMS provider for data encryption
Using sysctls in a Kubernetes Cluster
Extend kubectl with plugins
Manage HugePages
Schedule GPUs

Edit This Page

Configure Pod Initialization

This page shows how to use an Init Container to initialize a Pod before an application Container runs.

Before you begin

You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube, or you can use one of these Kubernetes playgrounds:

To check the version, enter kubectl version.

Create a Pod that has an Init Container

In this exercise you create a Pod that has one application Container and one Init Container. The init container runs to completion before the application container starts.

Here is the configuration file for the Pod:

pods/init-containers.yaml
apiVersion: v1
kind: Pod
metadata:
  name: init-demo
spec:
  containers:
  - name: nginx
    image: nginx
    ports:
    - containerPort: 80
    volumeMounts:
    - name: workdir
      mountPath: /usr/share/nginx/html
  # These containers are run during pod initialization
  initContainers:
  - name: install
    image: busybox
    command:
    - wget
    - "-O"
    - "/work-dir/index.html"
    - http://kubernetes.io
    volumeMounts:
    - name: workdir
      mountPath: "/work-dir"
  dnsPolicy: Default
  volumes:
  - name: workdir
    emptyDir: {}

In the configuration file, you can see that the Pod has a Volume that the init container and the application container share.

The init container mounts the shared Volume at /work-dir, and the application container mounts the shared Volume at /usr/share/nginx/html. The init container runs the following command and then terminates:

wget -O /work-dir/index.html http://kubernetes.io

Notice that the init container writes the index.html file in the root directory of the nginx server.

Create the Pod:

kubectl apply -f https://k8s.io/examples/pods/init-containers.yaml

Verify that the nginx container is running:

kubectl get pod init-demo

The output shows that the nginx container is running:

NAME        READY     STATUS    RESTARTS   AGE
init-demo   1/1       Running   0          1m

Get a shell into the nginx container running in the init-demo Pod:

kubectl exec -it init-demo -- /bin/bash

In your shell, send a GET request to the nginx server:

root@nginx:~# apt-get update
root@nginx:~# apt-get install curl
root@nginx:~# curl localhost

The output shows that nginx is serving the web page that was written by the init container:

<!Doctype html>
<html id="home">

<head>
...
"url": "http://kubernetes.io/"}</script>
</head>
<body>
  ...
  <p>Kubernetes is open source giving you the freedom to take advantage ...</p>
  ...

What's next

Feedback